第07章_InnoDB数据结构
友情提示
转载须知: 以下所有文章整理于B站宋红康老师的《MySQL数据库入门到大牛》。MySQL (opens new window)
# 1. 数据库的存储结构:页
索引结构给我们提供了高效的索引方式,不过索引信息以及数据记录都是保存在文件上的,确切说是存储在页结构中。另一方面,索引是在存储引擎中实现的, MySQL服务器上的存储引擎
负责对表中数据的读取和写入工作。不同存储引擎中 存放的格式
一般是不同的,甚至有的存储引擎比如Memory都不用磁盘来存储数据。
由于InnoDB
是MySQL的默认存储引擎
,所以本章剖析InnoDB存储引擎的数据存储结构。
# 1.1 磁盘与内存交互基本单位:页
InnoDB 将数据划分为若干个页,InnoDB中页的大小默认为 16KB
。
以页
作为磁盘和内存之间交互的 基本单位
,也就是一次最少从磁盘中读取16KB的内容到内存中,一次最少把内存中的16KB内容刷新到磁盘中。也就是说,在数据库中,不论读一行,还是读多行,都是将这些行所在的页进行加载。也就是说,数据库管理存储空间的基本单位是页(Page),数据库 I/O 操作的最小单位是页。一个页中可以存储多个行记录。
记录是按照行来存储的,但是数据库的读取并不以行为单位,否则一次读取(也就是一次 IO 操作)只能处理一行数据,效率会非常低。
# 1.2 页结构概述
页a、页b、页c…页n这些页可以不在物理结构上相连
,只要通过双向链表
相关联即可。每个数据页中的记录会按照主键值从小到大的顺序组成一个单向链表
,每个数据页都会为存储在它里边的记录生成一个页目录
,在通过主键查找某条记录的时候可以在页目录中使用二分法
快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录。
# 1.3 页的大小
不同的数据库管理系统(简称DBMS)的页大小不同。比如在 MySQL 的 InnoDB 存储引擎中,默认页的大小是 16KB
,我们可以通过下面的命令来进行查看:
show variables like '%innodb_page_size%';
SQL Server 中页的大小为 8KB
,而在 Oracle 中我们用术语 "块
" (Block)来表示 "页",Oracle 支持的快大小为2KB, 4KB, 8KB, 16KB, 32KB 和 64KB。
# 1.4 页的上层结构
另外在数据库中,还存在着区(Extent)、段(Segment)和表空间(Tablespace)的概念。行、页、区、段、表空间的关系如下图所示:
区(Extent) 是比页大一级的存储结构,在 InnoDB 存储引擎中,一个区会分配 64 个连续的页
。因为 InnoDB 中的页大小默认是 16KB,所以一个区的大小是 64*16KB= 1MB
。
段(Segment) 由一个或多个区组成,区在文件系统是一个连续分配的空间(在InnoDB中是连续的64个页) ,不过在段中不要求区与区之间是相邻的。 段是数据库中的分配单位,不同类型的数据库对象以不同的段形式存在。
当我们创建数据表、索引的时候,就会相应创建对应的段,比如创建一张表时会创建一个表段,创建一个索引时会创建一个索引段。
表空间(Tablespace) 是一个逻辑容器,表空间存储的对象是段,在一个表空间中可以有一个或多个段,但是一个段只能属于一个表空间。数据库由一个或多个表空间组成,表空间从管理上可以划分为 系统表空间
、用户表空间
、撤销表空间
、临时表空间
等。
# 2. 页的内部结构
页如果按类型划分的话,常见的有 数据页(保存B+树节点)
、系统表
、Undo 页
和 事务数据页
等。数据页是我们最常使用的页。
数据页的 16KB 大小的存储空间被划分为七个部分,分别是:
文件头(File Header)
:描述页的信息,固定38字节大小页头(Page Header)
:页的状态信息固定56字节大小最大最小记录(Infimum+supremum)
:最大和最小记录,这是两个虚拟的行记录,固定26字节大小用户记录(User Records)
:存储行记录内容,大小不固定空闲空间(Free Space)
:页中还没有被使用的空间,大小不固定页目录(Page Directory)
:存储用户记录的相对位置,大小不固定文件尾(File Tailer)
:校验页是否完整,固定8字节大小
页结构的示意图如下所示:
如下表所示:
# 2.1 File Header(文件头部)
- 作用:描述各种页的通用信息。(比如页的编号、其上一页、下一页是谁等)
- 大小:38字节
- 构成
名称 | 大小 | 描述 |
---|---|---|
FIL_PAGE_SPACE_OR_CHKSUM | 4字节 | 页面校验和 |
FIL_PAGE_OFFSET | 4字节 | 页号 |
FIL_PAGE_PREV | 4字节 | 上一页的页号 |
FIL_PAGE_NEXT | 4字节 | 下一页的页号 |
FIL_PAGE_LSN | 8字节 | 页面被最后修改时对应日志序列位置(Log Sequence Number) |
FIL_PAGE_TYPE | 2字节 | 页的类型 |
FIL_PAGE_FILE_FLUSH_LSN | 8字节 | 仅系统表空间的一个页中的定义,代表文件至少被刷新到了对应的LSN值 |
FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID | 4字节 | 页属于哪个表空间 |
- 校验和:就是对于一个很长的字节串来说,我们会通过某种算法来计算一个比较短的值来代表这个很长的字节串,这个比较短的值就称为校验和。在比较两个很长的字节串之前,先比较这两个长字节串的校验和,如果校验和都不一样,则两个长字节串肯定是不同的,所以省去了直接比较两个比较长的字节串的时间损耗。
MySQL使用头尾校验和来判断数据的更新是否发生中断
。
# 2.2 File Trailer(文件尾部)
- 作用:校验数据完整性。文件头部和文件尾部都有属性:FIL_PAGE_SPACE_OR_CHKSUM
- 前4个字节代表页的校验和:这个部分是和File Header中的校验和相对应的。
- 后4个字节代表页面被最后修改时对应的日志序列位置(LSN):这个部分也是为了校验页的完整性的,如果首部和尾部的LSN值校验不成功的话,就说明同步过程出现了问题。
- 大小:8个字节
# 2.3 Free Space(空闲空间)
- 作用:空闲空间和用户记录共同构成了数据区。
- 在一开始生成页的时候,其实并没有User Records这个部分,每当我们插入一条记录,都会从Free Space部分,也就是尚未使用的存储空间中申请一个记录大小的空间划分到User Records部分。
- 当Free Space部分的空间全部被User Records部分替代掉之后,也就意味着这个页使用完了,如果还有新的记录插入的话,就需要去申请新的页了。
- 大小:不固定
# 2.4 User Records(用户记录)
- 作用:User Records中的这些记录按照指定的
行格式
一条一条摆在User Records部分,相互之间形成单链表。 - 大小:不固定
# 2.5 Infimum、Supremum
- 作用:记录页内的最大值和最小值。
- InnoDB规定的最小记录与最大记录这两条记录的构造十分简单,都是由5字节大小的记录头信息和8字节大小的一个固定的部分组成的
最大、最小记录不是我们自己定义的记录
,所以它们不属于User Records部分
,他们被单独放在一个称为Infimum + Supremum的部分
- 大小:26字节
# 2.6 Page Directory(页目录)
作用:通过页目录,使用二分查找法的方式进行检索,提升效率。
- 在页中,记录是以单向链表的形式进行存储的。单向链表的特点就是插入、删除非常方便,但是检索效率不高,最差的情况下需要遍历链表上的所有节点才能完成检索。
- 因此在页结构中专门设计了页目录这个模块,专门给记录做一个目录,通过二分查找法的方式进行检索,提升效率。
大小:不固定
页中查找某条记录的过程:
将所有的记录分成几个组,这些记录包括最小记录和最大记录,但不包括标记为“已删除”的记录。
第1组,也就是最小记录所在的分组只有1个记录;
最后一组,就是最大记录所在的分组,会有 1-8 条记录;
其余的组记录数量在4-8条之间,一般是4条。
在
每个组中最后一条记录的头信息中会存储该组一共有多少条记录,作为 n_owned 字段
。页目录用来存储每组最后一条记录的地址偏移量,这些地址偏移量会按照先后顺序存储起来。
每组的地址偏移量也被称之为槽(slot),每个槽相当于指针指向了不同组的最后一个记录。、
举例1:
举例2:
- 现在的page_demo表中正常的记录共有6条,InnoDB会把它们分成两组,第一组中只有一个最小记录,第二组中是剩余的5条记录。如下图:
- 分组的具体细节:
- 初始情况下一个数据页里只有最小记录和最大记录两条记录,它们分属于两个分组。
- 之后每插入一条记录,都会从页目录中找到主键值比本记录的主键值大并且差值最小的槽,然后把该槽对应的记录的n_owned值加1,表示本组内又添加了一条记录,直到该组中的记录数等于
8
个。 - 在一个组中的记录数等于8个后再插入一条记录时,会将组中的记录拆分成两个组,一个组中4条记录,另一个5条记录。这个过程会在页目录中新增一个槽来记录这个新增分组中最大的那条记录的偏移量。
页目录结构下如何快速查找记录实例:
- 现在向page_demo表中添加更多的数据。如下:
INSERT INTO page_demo VALUES(5, 500, 'zhou'), (6, 600, 'chen'), (7, 700, 'deng'), (8, 800, 'yang'), (9, 900, 'wang'),
(10, 1000, 'zhao'), (11, 1100, 'qian'), (12, 1200, 'feng'), (13, 1300, 'tang'), (14, 1400, 'ding'),(15, 1500, 'jing'), (16, 1600, 'quan');
2
- 添加了12条记录,现在页里一共有18条记录了(包括最小和最大记录),这些记录被分成了5个组,如图所示:
- 这里只保留了16条记录的记录头信息中的n_owned和next_record属性,省略了各个记录之间的箭头。
- 们想找主键值为6的记录,过程是这样的:
- 计算中间槽的位置:(0+4)/2=2,所以查看槽2对应记录的主键值为8,又因为8 > 6,所以设置high=2,low保持不变。
- 重新计算中间槽的位置:(0+2)/2=1,所以查看槽1对应的主键值为4,又因为4 < 6,所以设置low=1,high保持不变。
- 因为high - low的值为1,所以确定主键值为6的记录在槽2对应的组中。此刻我们需要找到槽2中主键值最小的那条记录,然后沿着单向链表遍历槽2中的记录。
- 由于一个组中包含的记录条数只能是1~8条,所以遍历一个组中的记录的代价是很小的。
小结:在一个数据页中查找指定主键值的记录的过程分为两步
- 通过二分法确定该记录所在的槽,并找到该槽所在分组中主键值最小的那条记录。
- 通过记录的next_record属性遍历该槽所在的组中的各个记录。
# 2.7 Page Header(页面头部)
- 作用:得到一个数据页中存储的记录的状态信息,比如本页中已经存储了多少条记录,第一条记录的地址是什么,页目录中存储了多少个槽等等。
- 大小:56个字节
字段名 | 大小(字节) | 描述 |
---|---|---|
FIL_PAGE_SPACE_OR_CHKSUM | 4 | 页面空间标识或校验和 |
FIL_PAGE_OFFSET | 4 | 页面的偏移量,即页面在表空间中的位置 |
FIL_PAGE_PREV | 4 | 前一页的偏移量,用于链表结构 |
FIL_PAGE_NEXT | 4 | 下一页的偏移量,用于链表结构 |
FIL_PAGE_LSN | 8 | 日志序列号(Log Sequence Number),标识最后一次修改的LSN |
FIL_PAGE_TYPE | 2 | 页面类型,如数据页、undo页等 |
FIL_PAGE_FILE_FLUSH_LSN | 8 | 页面被刷新到磁盘的LSN |
FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID | 4 | 存档日志编号或空间ID(版本不同可能有所不同) |
PAGE_N_DIR_SLOTS | 2 | 页目录中的槽(slot)数量,即记录指针的数量 |
PAGE_HEAP_TOP | 2 | 指向堆中第一个记录的指针 |
PAGE_N_HEAP | 2 | 页面中记录的数量(包括已删除的记录,但不包括Infimum和Supremum记录) |
PAGE_FREE | 2 | 指向第一个可重用的记录的指针,即删除记录链表的头指针 |
PAGE_GARBAGE | 2 | 页面中已删除记录的字节数 |
PAGE_LAST_INSERT | 2 | 最后插入记录的位置 |
PAGE_DIRECTION | 2 | 最后一个插入记录的方向(顺序、逆序) |
PAGE_N_DIRECTION | 2 | 相同方向连续插入的记录数 |
PAGE_N_RECS | 2 | 页中的用户记录数 |
PAGE_MAX_TRX_ID | 8 | 修改页面的最大事务ID(仅限二级索引) |
PAGE_LEVEL | 2 | B+树的层级(叶子节点为0) |
PAGE_INDEX_ID | 8 | 索引ID |
# 2.8 从数据库页的角度看B+树如何查询
一颗B+树按照字节类型可以分为两部分:
- 叶子节点,B+ 树最底层的节点,节点的高度为0,存储行记录。
- 非叶子节点,节点的高度大于0,存储索引键和页面指针,并不存储行记录本身。
当我们从页结构来理解 B+ 树的结构的时候,可以帮我们理解一些通过索引进行检索的原理:
1. B+ 树是如何进行记录检索的?
如果通过 B+ 树的索引查询行记录,首先是从 B+ 树的根开始,逐层检索,直到找到叶子节点,也就是找到对应的数据页为止,将数据页加载到内存中,页目录中的槽(slot)采用二分查找
的方式先找到一个粗略的记录分组,然后再在分组中通过 链表遍历
的方式查找记录。
2. 普通索引和唯一索引在查询效率上有什么不同?
我们创建索引的时候可以是普通索引,也可以是唯一索引,那么这两个索引在查询效率上有什么不同呢?
唯一索引就是在普通索引上增加了约束性
,也就是关键字唯一,找到了关键字就停止检索
。而普通索引,可能会存在用户记录中的关键字相同
的情况,根据页结构的原理,当我们读取一条记录的时候,不是单独将这条记录从磁盘中读出去,而是将这个记录所在的页加载到内存中进行读取
。InnoDB存储引擎的页大小为16KB,在一个页中可能存储着上千个记录,因此在普通索引的字段上进行查找也就是在内存中多几次“判断下一条记录
”的操作,对于CPU来说,这些操作所消耗的时间是可以忽略不计的
。所以对一个索引字段进行检索,采用普通索引还是唯一索引在检索效率上基本上没有差别
。
# 3. InnoDB行格式 (或记录格式)
- 我们平时的数据以行为单位来向表中插入数据,这些记录在磁盘上的存放方式也被称为
行格式
或者记录格式
- InnoDB存储引擎设计了4种不同类型的
行格式
,分别是Compact
、Redundant
、Dynamic
和Compressed
行格式。 - MySQL8的默认行格式是Dynamic
# 3.1 MySQL8中行格式相关命令
查看默认行格式:
SELECT @@innodb_default_row_format; // 查看具体表的行格式 SHOW TABLE STATUS like '表名'\G
1
2
3在创建或修改表的语句中指定行格式:
CREATE TABLE 表名 (列的信息) ROW_FORMAT=行格式名称 ALTER TABLE 表名 ROW_FORMAT=行格式名称
1
2
# 3.2 COMPACT行格式
- 在MySQL 5.1版本中,默认设置为Compact行格式。一条完整的记录其实可以被分为
记录的额外信息
和记录的真实数据
两大部分。
# 变长字段长度列表
MySQL支持一些变长的数据类型,比如VARCHAR(M)、VARBINARY(M)、TEXT类型,BLOB类型,变长字段中存储多少字节的数据不是固定的,所以我们
在存储真实数据的时候需要顺便把这些数据占用的字节数也存起来
。在Compact行格式中,把所有变长字段的真实数据占用的字节长度都存放在记录的开头部位,从而形成一个变长字段长度列表。注意:这里面存储的变长长度和字段顺序是反过来的。比如两个varchar字段在表结构的顺序是a(10),b(15)。那么在变长字段长度列表中存储的长度顺序就是15,10,是反过来的。
以record_test_table表中的第一条记录举例:因为record_test_table表的col1、col2、col4列都是VARCHAR(8)类型的,所以这三个列的值的长度都需要保存在记录开头处,注意record_test_table表中的各个列都使用的是ascii字符集(每个字符只需要1个字节来进行编码)。
列名 存储内容 内容长度(十进制表示) 内容长度(十六进制表示) col1 ‘zhangsan’ 8 0x08 col2 ‘lisi’ 4 0x04 col4 'songhk ’ 6 0x86 把这个字节串组成的变长字段长度列表填入上边的示意图中的效果就是:
# NULL值列表
- Compact行格式会把可以为NULL的列统一管理起来,存在一个标记为NULL值列表中。如果表中没有允许存储NULL的列,则NULL值列表也不存在了。
- 之所以要存储NULL是因为数据都是需要
对齐
的,如果没有标注出来NULL值的位置,就有可能在查询数据的时候出现混乱。 - 在行数据得头部开辟出一块空间专门用来记录该行数据哪些是非空数据,哪些是空数据,格式如下:
- 二进制位的值为1时,代表该列的值为NULL。
- 二进制位的值为0时,代表该列的值不为NULL。
- 键肯定是非NULL且唯一的,在NULL值列表的数据中就会自动跳过主键
- record_test_table的两条记录的NULL值列表就如下:
# 记录头信息(5字节)
记录头信息各属性如下:
名称 大小(单位:bit) 描述 预留位1 1 没有使用 预留位2 1 没有使用 delete_mask 1 标记该记录是否被删除 min_rec_mask 1 B+树的每层非叶子节点中的最小记录都会添加该标记 n_owned 4 表示当前记录拥有的记录数 heap_no 13 表示当前记录在记录堆的位置信息 record_type 3 表示当前记录的类型,0表示普通记录,1表示B+树非叶节点记录,2表示最小记录,3表示最大记录 next_record 16 表示下一条记录的相对位置 简化后的行格式示意图:
插入数据:
INSERT INTO page_demo VALUES(1, 100, 'song'), (2, 200, 'tong'), (3, 300, 'zhan'), (4, 400, 'lisi');
1记录头信息图示如下:
# 记录的真实数据(包括隐藏列)
记录的真实数据除了我们自己定义的列的数据以外,还会有三个隐藏列:
列名 是否必须 占用空间 描述 row_id 否 6字节 行ID,唯一标识记录 transaction_id 是 6字节 事务ID roll_pointer 是 7字节 回滚指针 实际上这几个列的真正名称其实是:DB_ROW_ID、DB_TRX_ID、DB_ROLL_PTR。
如果一个表没有明确声明的主键,表中第一个
唯一非空索引
会被作为隐式主键,如果不存在唯一非空索引,那么InnoDB引擎会为表默认添加一个名为row_id的隐藏列作为主键。所以row_id是在没有自定义主键以及唯一非空索引的情况下才会存在的
。
笔记
在InnoDB存储引擎中,无论是选择唯一索引作为聚簇索引(隐式主键),还是在没有明确主键和合适的唯一索引时使用隐藏的row_id
作为聚簇索引,核心目的都是为了保证表中每条记录的唯一性,并基于这种唯一性进行物理排序和存储。
# 举例分析Compact行记录的内部存储结构
SQL准备
CREATE TABLE mytest( col1 VARCHAR(10), col2 VARCHAR(10), col3 CHAR(10), col4 VARCHAR(10) )ENGINE=INNODB CHARSET=LATIN1 ROW_FORMAT=COMPACT; INSERT INTO mytest VALUES('a','bb','bb','ccc'), VALUES('d','ee','ee','fff'), VALUES('d',NULL,NULL,'fff');
1
2
3
4
5
6
7
8
9
10
11在Windows操作系统下,可以选择通过程序UltraEdit打开表空间文件mytest.ibd这个二进制文件。内容如下:
- 该行记录从0000c078开始(彩色部分),整理一下:
03 02 01 /*变长字段长度列表,逆序*/
00 /*NULL标志位,第一行没有NULL值*/
00 00 10 00 2c /*Record Header,固定5字节长度*/
00 00 00 2b 68 00 /*RowID InnoDB自动创建,6字节*/
00 00 00 00 06 05 /*TransactionID*/
80 00 00 00 32 01 10 /*Roll Pointer*/
61 /*列1数据'a'*/
62 62 /*列2数据'bb'*/
62 62 20 20 20 20 20 20 20 20 /*列3数据'bb',固定长度10,20在ASCII中表示空格符,用于填充定长字段的空位置*/
63 63 63 /*列4数据'ccc'*/
2
3
4
5
6
7
8
9
10
# 3.3 Dynamic和Compressed行格式
# 行溢出
前置知识:一个VARCHAR(M)类型的列就最多可以存储65533个字节
很多DBA喜欢MySQL数据库提供的VARCHAR(M)类型,认为可以存放65535字节。这是真的吗?运行以下sql语句:
CREATE TABLE varchar_size_demo( c VARCHAR(65535) ) CHARSET=ascii ROW_FORMAT=Compact;
1
2
3ERROR 1118 (42000): Row size too large. The maximum row size for the used table type, not counting BLOBs, is 65535. This includes storage overhead, check the manual. You have to change some columns to TEXT or BLOBs
1
2报错信息表达的意思是:MySQL对一条记录占用的最大存储空间是有限制的,除BLOB或者TEXT类型的列之外,其他所有的列(不包括隐藏列和记录头信息)占用的字节长度加起来不能超过65535个字节。
这个65535个字节除了列本身的数据之外,还包括一些其他的数据
,以Compact行格式为例,如果该VARCHAR类型的列没有NOT NULL属性,那最多只能存储65532
个字节的数据,因为变长字段的长度占用2个字节
,NULL值标识需要占用1个字节
。如果有not null属性,那么就不需要NULL值标识,也就可以多存储一个字节,即65533
个字节。
InnoDB存储引擎可以将一条记录中的某些数据存储在真正的数据页面之外。
我们可以知道一个页的大小一般是16KB,也就是16384字节,而一个VARCHAR(M)类型的列就最多可以存储65533个字节,这样就可能出现一个页存放不了一条记录,这种现象称为
行溢出
。在Compact和Reduntant行格式中,对于占用存储空间非常大的列,在记录的真实数据处只会存储该列的
部分数据
,把剩余的数据分散存储在其他的几个页中进行分页存储
,然后记录的真实数据处用20
个字节存储指向这些页的指针
,从而可以找到剩余数据所在的页。
# Dynamic和Compressed行格式的区别
- 在MySQL 8.0中,默认行格式就是Dynamic,Dynamic、Compressed行格式和Compact行格式挺像,只不过在处理行溢出数据时有分歧:
- Compressed和Dynamic两种记录格式对于存放在BLOB中的数据采用了完全的行溢出的方式。如图,在数据页中只存放20个字节的指针(溢出页的地址),实际的数据都存放在Off Page(溢出页)中。且Compressed会对数据进行压缩存储。
- Compact和Redundant两种格式会在记录的真实数据处存储一部分数据(存放768个前缀字节)。
# 3.4 Redundant行格式
- Redundant是MySQL 5.0版本之前InnoDB的行记录存储方式,MySQL 5.0支持Redundant是为了兼容之前版本的页格式。
# 4. 区、段与碎片区
# 4.1 为什么要有区?
B+树
的每一层中的页都会形成一个双向链表,如果是以页为单位
来分配存储空间的话,双向链表相邻的两个页之间的 物理位置可能离得非常远
。我们介绍B+树索引的适用场景的时候特别提到范围查询只需要定位到最左边的记录和最右边的记录,然后沿着双向链表一直扫描就可以了,而如果链表中相邻的两个页物理位置离得非常远,就是所谓的随机I/O
。再一次强调,磁盘的速度和内存的速度差了好几个数量级,随机I/O是非常慢的
,所以我们应该尽量让链表中相邻的页的物理位置也相邻,这样进行范围查询的时候才可以使用所谓的 顺序I/O
。
引入区
的概念,一个区就是在物理位置上连续的64个页
。因为InnoDB中的页大小默认是16KB,所以一个区的大小是64*16KB=1MB
,在表中数据量大
的时候,为某个索引分配空间的时候就不再按照页为单位分配了,而是按照区为单位分配
,甚至在表中的数据特别多的时候,可以一次性分配多个连续的区。虽然可能造成一点点空间的浪费
(数据不足以填充满整个区),但是从性能角度看,可以消除很多的随机1/O,功大于过
!
# 4.2 为什么要有段?
对于范围查询,其实是对B+树叶子节点中的记录进行顺序扫描,而如果不区分叶子节点和非叶子节点,统统把节点代表的页面放到申请到的区中的话,进行范围扫描的效果就大打折扣了。所以InnoDB对B+树的叶子节点和非叶子节点进行了区别对待,也就是说叶子节
点有自己独有的区,非叶子节点也有自己独有的区。存放叶子节点的区的集合就算是一个段(segment)
,存放非叶子节点的区的集合也算是一个段。也就是说一个索引会生成2个段,一个叶子节点段
,一个非叶子节点段
。
除了索引的叶子节点段和非叶子节点段之外,InnoDB中还有为存储一些特殊的数据而定义的段,比如回滚段。所以,常见的段有 数据段
、索引段
、回滚段
。数据段即为B+树的叶子节点,索引段即为B+树的非叶子节点。
在InnoDB存储引擎中,对段的管理都是由引擎自身所完成, DBA不能也没有必要对其进行控制。这从一定程度上简化了DBA对于段的管理。
段其实不对应表空间中某一个连续的物理区域,而是一个逻辑上的概念,由若干个零散的页面以及一些完整的区组成。
# 4.3 为什么要有碎片区?
默认情况下,一个使用InnoDB存储引擎的表只有一个聚簇索引,一个索引会生成2个段,而段是以区为单位申请存储空间的,一个区默认占用1M(64*16Kb=1024Kb)存储空间,所以默认情况下一个只存了几条记录的小表也需要2M的存储空间么? 以后每次添加一个索引都要多申请2M的存储空间么?这对于存储记录比较少的表简直是天大的浪费。这个问题的症结在于到现在为止我们介绍的区都是非常 纯粹
的,也就是一个区被整个分配给某一个段,或者说区中的所有页面都是为了存储同一个段的数据而存在的,即使段的数据填不满区中所有的页面,那余下的页面也不能挪作他用。
为了考虑以完整的区为单位分配给某个段对于 数据量较小
的表太浪费存储空间的这种情况,InnoDB提出了一个碎片(fragment)区
的概念。在一个碎片区中,并不是所有的页都是为了存储同一个段的数据而存在的,而是碎片区中的页可以用于不同的目的,比如有些页用于段A,有些页用于段B,有些页甚至哪个段都不属于。碎片区直属于表空间
,并不属于任何一个段。
所以此后为某个段分配存储空间的策略是这样的:
- 在刚开始向表中插入数据的时候,段是从某个碎片区以单个页面为单位来分配存储空间的。
- 当某个段已经占用了
32个碎片区
页面之后,就会申请以完整的区为单位来分配存储空间。
所以现在段不能仅定义为是某些区的集合,更精确的应该是 某些零散的页面 以及一些完整的区
的集合。
# 4.4 区的分类
区大体上可以分为4种类型:
- 空闲的区 (FREE) : 现在还没有用到这个区中的任何页面。
- 有剩余空间的碎片区 (FREE_FRAG):表示碎片区中还有可用的页面。
- 没有剩余空间的碎片区 (FULL_FRAG):表示碎片区中的所有页面都被使用,没有空闲页面。
- 附属于某个段的区 (FSEG):每一个索引都可以分为叶子节点段和非叶子节点段。
处于FREE
、FREE_FRAG
以及 FULL_FRAG
这三种状态的区都是独立的,直属于表空间
。而处于 FSEG
状态的区是附属于某个段
的。
笔记
如果把表空间比作是一个集团军,段就相当于师,区就相当于团。一般的团都是隶属于某个师的,就像是处于 FSEG 的区全部隶属于某个段,而处于 FREE、FREE_FRAG 以及 FULL_FRAG 这三种状态的区却直接隶属于表空间,就像独立团直接听命于军部一样。
# 5. 表空间
表空间可以看做是InnoDB存储引擎逻辑结构的最高层,所有的数据都存放在表空间中。
表空间是一个
逻辑容器
,表空间存储的对象是段
,在一个表空间中可以有一个或多个段,但是一个段只能属于一个表空间。表空间数据库由一个或多个表空间组成
,表空间从管理上可以划分为系统表空间
(Systemtablespace)、独立表空间
(File-per-table tablespace)、撤销表空间
(Undo Tablespace)和临时表空间
(Temporary Tablespace)等。
# 5.1 独立表空间
独立表空间,即每张表有一个独立的表空间,也就是数据和索引信息都会保存在自己的表空间中。独立的表空间 (即:单表) 可以在不同的数据库之间进行 迁移
。
空间可以回收 (DROP TABLE 操作可自动回收表空间;其他情况,表空间不能自己回收) 。如果对于统计分析或是日志表,删除大量数据后可以通过:alter table TableName engine=innodb;
回收不用的空间。对于使用独立表空间的表,不管怎么删除,表空间的碎片不会太严重的影响性能,而且还有机会处理。
独立表空间结构
独立表空间由段、区、页组成。
真实表空间对应的文件大小
我们到数据目录里看,会发现一个新建的表对应的 .ibd
文件只占用了 96K
,才6个页面大小 (MySQL5.7中),这是因为一开始表空间占用的空间很小,因为表里边都没有数据。不过别忘了这些 .ibd 文件是自扩展的
,随着表中数据的增多,表空间对应的文件也逐渐增大。
查看 InnoDB 的表空间类型:
show variables like 'innodb_file_per_table';
你能看到 innodb_file_per_table=ON, 这就意味着每张表都会单独保存一个 .ibd
文件。
# 5.2 系统表空间
系统表空间的结构和独立表空间基本类似,只不过由于整个MySQL进程只有一个系统表空间,在系统表空间中会额外记录一些有关整个系统信息的页面,这部分是独立表空间中没有的。
InnoDB数据字典
每当我们向一个表中插入一条记录的时候,MySQL校验过程
如下:
- 先要校验一下插入语句对应的表存不存在,插入的列和表中的列是否符合
- 如果语法没有问题的话,还需要知道该表的聚簇索引和所有二级索引对应的根页面是哪个表空间的哪个页面
- 然后把记录插入对应索引的B+树中。
所以说,MySQL除了保存着我们插入的用户数据之外,还需要保存许多额外的信息,比方说:
- 某个表属于哪个表空间,表里边有多少列
- 表对应的每一个列的类型是什么
- 该表有多少索引,每个索引对应哪几个字段,该索引对应的根页面在哪个表空间的哪个页面
- 该表有哪些外键,外键对应哪个表的哪些列
- 某个表空间对应文件系统上文件路径是什么
- ......
上述这些数据并不是我们使用 INSERT 语句插入的用户数据,实际上是为了更好的管理我们这些用户数据而不得以引入的一些额外数据,这些数据页称为 元数据
。InnoDB 存储引擎特意定义了一些列的 内部系统表
(internal system table) 来记录这些元数据:
表明 | 描述 |
---|---|
SYS_TABLES | 整个InnoDB存储引擎中所有的表的信息 |
SYS_COLUMNS | 整个InnoDB存储引擎中所有的列的信息 |
SYS_INDEXES | 整个InnoDB存储引擎中所有的索引的信息 |
SYS_FIELDS | 整个InnoDB存储引擎中所有的索引对应的列的信息 |
SYS_FOREIGN | 整个InnoDB存储引擎中所有的外键的信息 |
SYS_FOREIGN_COLS | 整个InnoDB存储引擎中所有的外键对应列的信息 |
SYS_TABLESPACES | 整个InnoDB存储引擎中所有的表空间信息 |
SYS_DATAFILES | 整个InnoDB存储引擎中所有的表空间对应文件系统的文件路径信息 |
SYS_VIRTUAL | 整个InnoDB存储引擎中所有的虚拟生成列的信息 |
这些系统表也称为 数据字典
,它们都是以 B+ 树的形式保存在系统表空间的某个页面中。其中 SYS_TABLES
、SYS_COLUMNS
、SYS_INDEXES
、SYS_FIELDS
这四个表尤其重要,称之为基本系统表
(basic system tables) ,我们先看看这4个表的结构:
注意:用户不能直接访问
InnoDB 的这些内部系统表,除非你直接去解析系统表空间对应文件系统上的文件。不过考虑到查看这些表的内容可能有助于大家分析问题,所以在系统数据库 information_schema
中提供了一些以 innodb_sys
开头的表:
USE information_schema; # 使用 information_schema 数据库
# 查看以 `SYS` 开头的系统表
SHOW TABLES LIKE 'innodb_sys%';
2
在 information_scheme
数据库中的这些以 INNODB_SYS
开头的表并不是真正的内部系统表 (内部系统表就是我们上边以 SYS
开头的那些表),而是在存储引擎启动时读取这些以 SYS
开头的系统表,然后填充到这些以 INNODB_SYS
开头的表中。以 INNODB_SYS
开头的表和以 SYS
开头的表中的字段并不完全一样,但仅供大家参考已经足矣。
# 附录:数据页加载的三种方式
InnoDB从磁盘中读取数据 最小单位
是数据页。而你想得到的 id = xxx 的数据,就是这个数据页众多行中的一行。
对于MySQL存放的数据,逻辑概念上我们称之为表,在磁盘等物理层面而言是按 数据页
形式进行存放的,当其加载到 MySQL 中我们称之为 缓存页
。
如果缓冲池没有该页数据,那么缓冲池有以下三种读取数据的方式,每种方式的读取速率是不同的:
# 1. 内存读取
如果该数据存在于内存中,基本上执行时间在 1ms 左右,效率还是很高的。
# 2. 随机读取
如果数据没有在内存中,就需要在磁盘上对该页进行查找,整体时间预估在 10ms
左右,这 10ms 中有6ms 是磁盘的实际繁忙时间(包括了寻道和半圈旋转时间
) ,有3ms是对可能发生的排队时间的估计值,另外还有1ms的传输时间,将页从磁盘服务器缓冲区传输到数据库缓冲区中。这10ms看起来很快,但实际上对于数据库来说消耗的时间已经非常长了,因为这还只是一个页的读取时间。
# 3. 顺序读取
顺序读取其实是一种批量读取的方式,因为我们请求的 数据在磁盘上往往都是相邻存储的
,顺序读取可以帮我们批量读取页面,这样的话,一次性加载到缓冲池中就不需要再对其他页面单独进行磁盘I/O操作了。如果一个磁盘的吞吐量是40MB/S,那么对于一个16KB大小的页来说,一次可以顺序读取2560 (40MB/16KB)个页,相当于一个页的读取时间为0.4ms
,采用批量读取的方式,即使是从磁盘上进行读取,效率也比从内存中只单独读取一个页的效率要高。